
 1. Objective 

 This  project  aims  to  build  a  machine  learning  model  capable  of  accurately 
 predicting  the  demand  for  yellow  taxis  in  New  York  City  based  on  historical  trip 
 data.  By  understanding  patterns  in  pickup  times,  locations,  and  other  relevant 
 features,  the  model  aims  to  help  optimise  taxi  fleet  distribution  and  improve 
 passenger experience. 

 1.1 Background 

 New  York  City’s  yellow  taxis  are  an  essential  mode  of  transport  for  millions  of 
 residents  and  tourists.  The  dynamic  nature  of  urban  mobility  makes  it  challenging 
 to  maintain  optimal  taxi  availability  at  the  right  place  and  time.  Predictive 
 modelling of taxi demand enables better decision-making for: 

 •  Dispatch systems 

 •  Surge pricing mechanisms 

 •  Urban traffic management 

 This  project  uses  publicly  available  NYC  Yellow  Taxi  Trip  data  to  analyse  historical 
 trends  and  train  machine  learning  models  to  forecast  future  demand  at  hourly 
 intervals across different city zones. 

 1.2 Key Features of the Project: 

 •  Large-Scale  Dataset  with  millions  of  trip  records  including  timestamps, 
 geolocations, and fare details. 



 •  Feature  Engineering  to  extract  meaningful  variables  such  as  hour-of-day, 
 day-of-week, location clusters, and weather influence (optional). 

 •  Modelling  techniques  involving  time  series  analysis  and  supervised  learning 
 models. 

 •  Real-World  Deployment  Readiness  through  the  integration  of  MLOps  practices, 
 enabling  automated  retraining,  monitoring,  and  deployment  of  the  model  via 
 cloud platforms. 

 1.3 Deliverables: 

 • Cleaned and structured the dataset ready for ML tasks. 

 • A trained and evaluated predictive model for hourly taxi demand. 

 • Visualisations and dashboards showing demand trends. 

 • Deployment-ready pipeline with automated retraining. 

 • Complete project documentation and source code. 

 1.4 Tools & Technologies: 

 •  Languages:  Python 

 •  Libraries:  Polars, Pandas, NumPy, Scikit-learn,  XGBoost, Matplotlib, Seaborn 

 •  Infrastructure:  Google Cloud Platform / AWS (for  MLOps) 

 •  Version Control:  GitHub 

 •  Notebook Environment:  Jupyter Notebooks / Google  Colab 

 2. Data Collection 

 The dataset used in this project is the  NYC Yellow  Taxi Trip Data  , publicly 
 available on  Kaggle  . It contains detailed trip records  of yellow taxis in New York 
 City, collected by the NYC Taxi and Limousine Commission (TLC). 

 Link:  https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data 

 2.1 Description of the Dataset 

 The dataset consists of millions of rows, where each row represents an individual 
 taxi trip. Key attributes in the dataset include: 

 aydie.in 

https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data
https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data
http://aydie.in/


 • pickup_datetime: Date and time of the trip start 

 • dropoff_datetime: Date and time of the trip end 

 • pickup_longitude and pickup_latitude: Pickup location coordinates 

 • dropoff_longitude and dropoff_latitude: Dropoff location coordinates 

 • passenger_count: Number of passengers during the trip 

 • trip_distance: Distance traveled in miles 

 • fare_amount: Cost of the ride 

 • payment_type: Method of payment 

 • tip_amount: Tip paid by the passenger 

 These features provide valuable information for understanding when and where 
 demand peaks across the city. 

 2.2 Data Acquisition Process 

 • The dataset was downloaded from Kaggle as CSV files, each file representing one 
 month of taxi trips. 

 • Files were merged and stored locally for preprocessing and analysis using 
 Python. 

 • For handling large data, operations were performed using batch loading, 
 filtering based on dates or areas, and leveraging efficient libraries such as  Dask 
 and  Polars  when required. 

 2.3 Time Frame 

 The dataset spans multiple years. For this project, a specific time window was 
 chosen (e.g., January 2016 to March 2016) to maintain focus and reduce 
 computational overhead. However, the approach is scalable to handle more 
 extended periods. 

 2.4 Storage & Versioning 

 • Data is stored in a structured folder hierarchy for raw and processed datasets. 

 • GitHub and Google Drive are used for version control and backups of scripts and 
 smaller sample files. 
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 • Cloud storage (e.g., GCS/AWS S3) is planned for integration in the MLOps phase 
 for scalable processing and deployment. 

 Data Exploration and Preprocessing 
 I am loading data into a Polars DataFrame using the month object while converting 
 tip_amount and tolls_amount to the Polars Float64 type during the load. I assign 
 total_records with the total record count of the dataset. [35.5 million records – Jan, 
 Feb, Mar 2016] 

 3.1.2  Performance Metrics: 

 Mean Absolute Percentage Error (MAPE)         Mean Squared Error (MSE) 

 Data Cleaning 
 Visualise the outliers using a map [folium library]. 

 Pickup Latitude and Longitude 

 The approximate bounding box (latitude and longitude) of New York City (NYC) is: 

 •  Southwest Corner (Min Latitude, Min Longitude):  (40.4774, -74.2591) 

 •  Northeast Corner (Max Latitude, Max Longitude): (40.9176, -73.7004) 
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 Calculating Trip Times, Trip Distance and Speed 
 -  Using the datetime module, we calculate trip_distance, trip_time, and 

 speed, and assign them as new dimensions to the monthly DataFrame. 
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 -  Remove trip_time < 0, null values and infinite values of speed. 

 -  So, we remove and clean the data for all January, February, and March 
 records across different dimensions and attributes. 

 Total Data Loss on all outlier removal (Jan): 
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 Unix Time Binning 

 Convert Time Stamp to Unix Time: 

 Unix Time Binning: 
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 Smoothing Time Series (Winzorisation) of Time Column: 

 *Do the same above steps for Feb, March dataset and export the data to CSV file. 

 Data Preparation / Clustering 
 Merge Jan, Feb, March data row-wise 

 Clustering Of Data 

 import  numpy  as  np 

 from  sklearn.cluster  import  MiniBatchKMeans 

 import  gpxpy.geo  # for haversine distance 

 # Getting coordinates from Polars DataFrame 

 coords = df_all.select([ 

 'pickup_latitude'  ,  'pickup_longitude' 

 ]).to_numpy() 

 # Will store nice cluster counts for each cluster size 

 neighbours = [] 
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 # Function to compute how many clusters are close to each other 

 def  find_min_distance  (  cluster_centers  ,  cluster_len  ): 

 less2  = []  # Stores count of close clusters  for each center 

 more2  = []  # Stores count of far clusters  for each center 

 min_dist  =  10000  # Initialize with a large distance 

 for  i  in  range  (  cluster_len  ):  # For each cluster  center 

 nice_points  =  0  # Clusters with at least one  nearby cluster 

 wrong_points  =  0  # Clusters with no nearby  clusters 

 for  j  in  range  (  cluster_len  ):  # Compare with  every other cluster 

 if  j  ==  i  : 

 continue  # skip comparing with itself 

 distance  = gpxpy.geo.haversine_distance( 

 cluster_centers  [  i  ][  0  ],  cluster_centers  [  i  ][  1  ], 

 cluster_centers  [  j  ][  0  ],  cluster_centers  [  j  ][  1  ] 

 ) 

 # Convert meters to miles and track minimum  inter-cluster 
 distance 

 distance_miles  =  distance  / (  1.60934  *  1000  ) 

 min_dist  =  min  (  min_dist  ,  distance_miles  ) 

 # Count as "nice" if distance is <= 2 Miles 

 if  distance_miles  <=  2  : 

 nice_points  +=  1 

 else  : 

 wrong_points  +=  1 

 less2  .append(  nice_points  ) 

 more2  .append(  wrong_points  ) 

 # Store the nice-points data for analysis later 

 neighbours.append(  less2  ) 

 avg_within_2  = np.mean(  less2  ) 

 avg_outside_2  =  cluster_len  -  avg_within_2 

 print  (  f"On choosing a cluster size of  {  cluster_len  }  "  ) 

 print  (  f"Avg. Number of Clusters within the vicinity  (i.e. 
 intercluster-distance < 2):  {  round  (  avg_within_2  ,  2  )  }\ 

 {  round  (  100  - (  avg_outside_2  *  100  /  cluster_len  ),  2  )  }  %"  ) 
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 print  (  f"Avg. Number of Clusters outside the vicinity (i.e. 
 intercluster-distance > 2):  {  round  (  avg_outside_2  ,  2  )  }  "  ) 

 print  (  f"Min inter-cluster distance =  {  round  (  min_dist  ,  3  )  }  Gap 
 {  round  (  min_dist  -  0.5  ,  2  )  }  "  ) 

 # Function to apply MiniBatchKMeans clustering on pickup coordinates 

 def  find_clusters  (  increment  ,  dataframe  ): 

 # Initialise and fit MiniBatchKMeans with an ‘i’  number of clusters 

 kmeans  = MiniBatchKMeans( 

 n_clusters  =  increment  ,  # Number of clusters  to form 

 batch_size  =  10000  ,  # Mini-batch size for  faster convergence 

 random_state  =  42  ,  # For reproducibility 

 ).fit(coords) 

 # Add cluster predictions as a new column to the  Polars DataFrame 

 dataframe  =  dataframe  .with_columns([ 

 pl.Series(  name  =  'pickup_cluster'  ,  values  = 
 kmeans  .predict(coords)) 

 ]) 

 # Extract the coordinates of cluster centers 

 cluster_centers  =  kmeans  .cluster_centers_ 

 cluster_len  =  len  (  cluster_centers  ) 

 # Number of clusters (should be equal to increment) 

 return  cluster_centers  ,  cluster_len 

 # Loop over different values of K (number of clusters) 

 for  increment  in  range  (  10  ,  100  ,  10  ):  # for k = 10  -> 100 by 10 

 cluster_centers, cluster_len = find_clusters(increment,  dataframe  = 
 df_all) 

 # Evaluate how tightly packed the clusters are  (within 2 miles) 

 find_min_distance(cluster_centers, cluster_len) 
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 Conclusion 

 aydie.in 

http://aydie.in/


 Feature Engineering 

 feature1 = number of pickup at t - 1 time 
 feature2 = number of pickup at t - 2 time 
 feature3 = number of pickup at t - 3 time 
 feature4 = number of pickup at t - 4 time 
 feature5 = number of pickup at t - 5 time 

 feature6= latitude of cluster 
 feature7 = longitude of cluster 
 feature8 = clusterID 

 feature9 = weekday 
 feature10 = exp_avg 

 Feature11 = time_stamp 

 import  pandas  as  pd 

 # ——— 0. Make sure df_all is a Polars DataFrame ——— 

 if  isinstance  (df_all, pd.DataFrame): 

 df_all = pl.from_pandas(df_all) 

 elif not  isinstance  (df_all, pl.DataFrame): 

 df_all = pl.DataFrame(df_all) 

 # ——— 1. Parse your binned-datetime into a true Datetime ——— 

 df_all = df_all.with_columns( 

 pl.col(  "pickup_binned_datetime"  ) 

 .str.replace(  '"'  ,  ""  ) 

 .str.to_datetime(  "%Y-%m-%dT%H:%M:%S.%3f"  ) 

 .alias(  "pickup_dt"  ) 

 ) 

 # ——— 2. Aggregate to one row per (cluster, time) ——— 

 df_counts = ( 

 df_all 

 .groupby([  "pickup_cluster"  ,  "pickup_dt"  ]) 

 .agg([ 

 pl.count().alias(  "target"  ), 

 pl.first(  "cluster_lat"  ).alias(  "lat"  ), 
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 pl.first(  "cluster_lon"  ).alias(  "lon"  ), 

 ]) 

 .sort([  "pickup_cluster"  ,  "pickup_dt"  ]) 

 ) 

 # ——— 3. Compute lags, weekday, exp-avg, cluster_id **and time_str** 
 ——— 

 df_features = df_counts.with_columns([ 

 # lags 

 pl.col(  "target"  ).shift(  1  ).over(  "pickup_cluster"  ).alias(  "ft_1"  ), 

 pl.col(  "target"  ).shift(  2  ).over(  "pickup_cluster"  ).alias(  "ft_2"  ), 

 pl.col(  "target"  ).shift(  3  ).over(  "pickup_cluster"  ).alias(  "ft_3"  ), 

 pl.col(  "target"  ).shift(  4  ).over(  "pickup_cluster"  ).alias(  "ft_4"  ), 

 pl.col(  "target"  ).shift(  5  ).over(  "pickup_cluster"  ).alias(  "ft_5"  ), 

 # cluster ID 

 pl.col(  "pickup_cluster"  ).alias(  "cluster_id"  ), 

 # weekday 

 pl.col(  "pickup_dt"  ).dt.weekday().alias(  "weekday"  ), 

 # exponential moving average 

 pl.col(  "target"  ) 

 .ewm_mean(  alpha  =  0.3  ) 

 .over(  "pickup_cluster"  ) 

 .alias(  "exp_avg"  ), 

 # **new**: 10-min time bin as "HH:MM" 

 pl.col(  "pickup_dt"  ) 

 .dt.truncate(  "10m"  )  # round DOWN to nearest  10m 

 .dt.strftime(  "%H:%M"  ) 

 .alias(  "time_str"  ), 

 ]).drop_nulls() 

 # ——— 4. Select + reorder final columns (including time_str) ——— 

 df_final = df_features.select([ 

 "time_str"  , 

 "ft_5"  ,  "ft_4"  ,  "ft_3"  ,  "ft_2"  ,  "ft_1"  , 

 "Lat"  ,  "lon"  ,  "weekday"  ,  "exp_avg"  ,  "cluster_id"  ,  "target" 

 ]) 
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 Step 1: Parse the time column into a Datetime 

 ●  "pickup_binned_datetime" might be a  string  like "2022-01-01T12:00:00.000" 
 ●  You  clean  it by removing quotes 
 ●  Then convert it to an actual  datetime type  so you  can later: 

 ○  Group by time 
 ○  Extract weekdays 
 ○  Sort chronologically 

 Store the parsed datetime in a new column called "pickup_dt" 

 Step 2: Group the data — count pickups per cluster & time 

 ●  Count  the number of pickups for each cluster (area)  and time bin → this 
 becomes your  target variable  (demand) 

 ●  Also, keep the lat and lon of the cluster as  features 
 ●  Sort it by cluster and datetime to compute  lag features 

 Now you have one row per (pickup_cluster, time_bin). 

 Step 3: Feature Engineering – Add lags, weekday, and moving average 

 I used .over("pickup_cluster") 

 to make sure these features are calculated  per cluster. 

 Export the dataset with these many features. 

 Dimension 3.25 Million by 11 Features 
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 Machine Learning 
 Load the Train and Test Datasets. 

 Testing / Result 

 Input / Output 

 ft_1  ft_2  ft_3  ft_4  ft_5  lat  lon  week 
 day 

 Exp_Av 
 g 

 Target 

 209  196  240  225  193  40.763863  -73.964451  6  206  205 

 186  171  205  209  196  40.763863  -73.964451  5  185  194 

 GitHub - Project: 

 https://github.com/aydiegithub/nyc-taxi-demand-prediction.git 
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