
 1. Objective

 This project aims to build a machine learning model capable of accurately
 predicting the demand for yellow taxis in New York City based on historical trip
 data. By understanding patterns in pickup times, locations, and other relevant
 features, the model aims to help optimise taxi fleet distribution and improve
 passenger experience.

 1.1 Background

 New York City’s yellow taxis are an essential mode of transport for millions of
 residents and tourists. The dynamic nature of urban mobility makes it challenging
 to maintain optimal taxi availability at the right place and time. Predictive
 modelling of taxi demand enables better decision-making for:

 • Dispatch systems

 • Surge pricing mechanisms

 • Urban traffic management

 This project uses publicly available NYC Yellow Taxi Trip data to analyse historical
 trends and train machine learning models to forecast future demand at hourly
 intervals across different city zones.

 1.2 Key Features of the Project:

 • Large-Scale Dataset with millions of trip records including timestamps,
 geolocations, and fare details.

 • Feature Engineering to extract meaningful variables such as hour-of-day,
 day-of-week, location clusters, and weather influence (optional).

 • Modelling techniques involving time series analysis and supervised learning
 models.

 • Real-World Deployment Readiness through the integration of MLOps practices,
 enabling automated retraining, monitoring, and deployment of the model via
 cloud platforms.

 1.3 Deliverables:

 • Cleaned and structured the dataset ready for ML tasks.

 • A trained and evaluated predictive model for hourly taxi demand.

 • Visualisations and dashboards showing demand trends.

 • Deployment-ready pipeline with automated retraining.

 • Complete project documentation and source code.

 1.4 Tools & Technologies:

 • Languages: Python

 • Libraries: Polars, Pandas, NumPy, Scikit-learn, XGBoost, Matplotlib, Seaborn

 • Infrastructure: Google Cloud Platform / AWS (for MLOps)

 • Version Control: GitHub

 • Notebook Environment: Jupyter Notebooks / Google Colab

 2. Data Collection

 The dataset used in this project is the NYC Yellow Taxi Trip Data , publicly
 available on Kaggle . It contains detailed trip records of yellow taxis in New York
 City, collected by the NYC Taxi and Limousine Commission (TLC).

 Link: https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data

 2.1 Description of the Dataset

 The dataset consists of millions of rows, where each row represents an individual
 taxi trip. Key attributes in the dataset include:

 aydie.in

https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data
https://www.kaggle.com/datasets/elemento/nyc-yellow-taxi-trip-data
http://aydie.in/

 • pickup_datetime: Date and time of the trip start

 • dropoff_datetime: Date and time of the trip end

 • pickup_longitude and pickup_latitude: Pickup location coordinates

 • dropoff_longitude and dropoff_latitude: Dropoff location coordinates

 • passenger_count: Number of passengers during the trip

 • trip_distance: Distance traveled in miles

 • fare_amount: Cost of the ride

 • payment_type: Method of payment

 • tip_amount: Tip paid by the passenger

 These features provide valuable information for understanding when and where
 demand peaks across the city.

 2.2 Data Acquisition Process

 • The dataset was downloaded from Kaggle as CSV files, each file representing one
 month of taxi trips.

 • Files were merged and stored locally for preprocessing and analysis using
 Python.

 • For handling large data, operations were performed using batch loading,
 filtering based on dates or areas, and leveraging efficient libraries such as Dask
 and Polars when required.

 2.3 Time Frame

 The dataset spans multiple years. For this project, a specific time window was
 chosen (e.g., January 2016 to March 2016) to maintain focus and reduce
 computational overhead. However, the approach is scalable to handle more
 extended periods.

 2.4 Storage & Versioning

 • Data is stored in a structured folder hierarchy for raw and processed datasets.

 • GitHub and Google Drive are used for version control and backups of scripts and
 smaller sample files.

 aydie.in

http://aydie.in/

 • Cloud storage (e.g., GCS/AWS S3) is planned for integration in the MLOps phase
 for scalable processing and deployment.

 Data Exploration and Preprocessing
 I am loading data into a Polars DataFrame using the month object while converting
 tip_amount and tolls_amount to the Polars Float64 type during the load. I assign
 total_records with the total record count of the dataset. [35.5 million records – Jan,
 Feb, Mar 2016]

 3.1.2 Performance Metrics:

 Mean Absolute Percentage Error (MAPE) Mean Squared Error (MSE)

 Data Cleaning
 Visualise the outliers using a map [folium library].

 Pickup Latitude and Longitude

 The approximate bounding box (latitude and longitude) of New York City (NYC) is:

 • Southwest Corner (Min Latitude, Min Longitude): (40.4774, -74.2591)

 • Northeast Corner (Max Latitude, Max Longitude): (40.9176, -73.7004)

 aydie.in

http://aydie.in/

 Calculating Trip Times, Trip Distance and Speed
 - Using the datetime module, we calculate trip_distance, trip_time, and

 speed, and assign them as new dimensions to the monthly DataFrame.

 aydie.in

http://aydie.in/

 - Remove trip_time < 0, null values and infinite values of speed.

 - So, we remove and clean the data for all January, February, and March
 records across different dimensions and attributes.

 Total Data Loss on all outlier removal (Jan):

 aydie.in

http://aydie.in/

 Unix Time Binning

 Convert Time Stamp to Unix Time:

 Unix Time Binning:

 aydie.in

http://aydie.in/

 Smoothing Time Series (Winzorisation) of Time Column:

 *Do the same above steps for Feb, March dataset and export the data to CSV file.

 Data Preparation / Clustering
 Merge Jan, Feb, March data row-wise

 Clustering Of Data

 import numpy as np

 from sklearn.cluster import MiniBatchKMeans

 import gpxpy.geo # for haversine distance

 # Getting coordinates from Polars DataFrame

 coords = df_all.select([

 'pickup_latitude' , 'pickup_longitude'

]).to_numpy()

 # Will store nice cluster counts for each cluster size

 neighbours = []

 aydie.in

http://aydie.in/

 # Function to compute how many clusters are close to each other

 def find_min_distance (cluster_centers , cluster_len):

 less2 = [] # Stores count of close clusters for each center

 more2 = [] # Stores count of far clusters for each center

 min_dist = 10000 # Initialize with a large distance

 for i in range (cluster_len): # For each cluster center

 nice_points = 0 # Clusters with at least one nearby cluster

 wrong_points = 0 # Clusters with no nearby clusters

 for j in range (cluster_len): # Compare with every other cluster

 if j == i :

 continue # skip comparing with itself

 distance = gpxpy.geo.haversine_distance(

 cluster_centers [i][0], cluster_centers [i][1],

 cluster_centers [j][0], cluster_centers [j][1]

)

 # Convert meters to miles and track minimum inter-cluster
 distance

 distance_miles = distance / (1.60934 * 1000)

 min_dist = min (min_dist , distance_miles)

 # Count as "nice" if distance is <= 2 Miles

 if distance_miles <= 2 :

 nice_points += 1

 else :

 wrong_points += 1

 less2 .append(nice_points)

 more2 .append(wrong_points)

 # Store the nice-points data for analysis later

 neighbours.append(less2)

 avg_within_2 = np.mean(less2)

 avg_outside_2 = cluster_len - avg_within_2

 print (f"On choosing a cluster size of { cluster_len } ")

 print (f"Avg. Number of Clusters within the vicinity (i.e.
 intercluster-distance < 2): { round (avg_within_2 , 2) }\

 { round (100 - (avg_outside_2 * 100 / cluster_len), 2) } %")

 aydie.in

http://aydie.in/

 print (f"Avg. Number of Clusters outside the vicinity (i.e.
 intercluster-distance > 2): { round (avg_outside_2 , 2) } ")

 print (f"Min inter-cluster distance = { round (min_dist , 3) } Gap
 { round (min_dist - 0.5 , 2) } ")

 # Function to apply MiniBatchKMeans clustering on pickup coordinates

 def find_clusters (increment , dataframe):

 # Initialise and fit MiniBatchKMeans with an ‘i’ number of clusters

 kmeans = MiniBatchKMeans(

 n_clusters = increment , # Number of clusters to form

 batch_size = 10000 , # Mini-batch size for faster convergence

 random_state = 42 , # For reproducibility

).fit(coords)

 # Add cluster predictions as a new column to the Polars DataFrame

 dataframe = dataframe .with_columns([

 pl.Series(name = 'pickup_cluster' , values =
 kmeans .predict(coords))

])

 # Extract the coordinates of cluster centers

 cluster_centers = kmeans .cluster_centers_

 cluster_len = len (cluster_centers)

 # Number of clusters (should be equal to increment)

 return cluster_centers , cluster_len

 # Loop over different values of K (number of clusters)

 for increment in range (10 , 100 , 10): # for k = 10 -> 100 by 10

 cluster_centers, cluster_len = find_clusters(increment, dataframe =
 df_all)

 # Evaluate how tightly packed the clusters are (within 2 miles)

 find_min_distance(cluster_centers, cluster_len)

 aydie.in

http://aydie.in/

 Conclusion

 aydie.in

http://aydie.in/

 Feature Engineering

 feature1 = number of pickup at t - 1 time
 feature2 = number of pickup at t - 2 time
 feature3 = number of pickup at t - 3 time
 feature4 = number of pickup at t - 4 time
 feature5 = number of pickup at t - 5 time

 feature6= latitude of cluster
 feature7 = longitude of cluster
 feature8 = clusterID

 feature9 = weekday
 feature10 = exp_avg

 Feature11 = time_stamp

 import pandas as pd

 # ——— 0. Make sure df_all is a Polars DataFrame ———

 if isinstance (df_all, pd.DataFrame):

 df_all = pl.from_pandas(df_all)

 elif not isinstance (df_all, pl.DataFrame):

 df_all = pl.DataFrame(df_all)

 # ——— 1. Parse your binned-datetime into a true Datetime ———

 df_all = df_all.with_columns(

 pl.col("pickup_binned_datetime")

 .str.replace('"' , "")

 .str.to_datetime("%Y-%m-%dT%H:%M:%S.%3f")

 .alias("pickup_dt")

)

 # ——— 2. Aggregate to one row per (cluster, time) ———

 df_counts = (

 df_all

 .groupby(["pickup_cluster" , "pickup_dt"])

 .agg([

 pl.count().alias("target"),

 pl.first("cluster_lat").alias("lat"),

 aydie.in

http://aydie.in/

 pl.first("cluster_lon").alias("lon"),

])

 .sort(["pickup_cluster" , "pickup_dt"])

)

 # ——— 3. Compute lags, weekday, exp-avg, cluster_id **and time_str**
 ———

 df_features = df_counts.with_columns([

 # lags

 pl.col("target").shift(1).over("pickup_cluster").alias("ft_1"),

 pl.col("target").shift(2).over("pickup_cluster").alias("ft_2"),

 pl.col("target").shift(3).over("pickup_cluster").alias("ft_3"),

 pl.col("target").shift(4).over("pickup_cluster").alias("ft_4"),

 pl.col("target").shift(5).over("pickup_cluster").alias("ft_5"),

 # cluster ID

 pl.col("pickup_cluster").alias("cluster_id"),

 # weekday

 pl.col("pickup_dt").dt.weekday().alias("weekday"),

 # exponential moving average

 pl.col("target")

 .ewm_mean(alpha = 0.3)

 .over("pickup_cluster")

 .alias("exp_avg"),

 # **new**: 10-min time bin as "HH:MM"

 pl.col("pickup_dt")

 .dt.truncate("10m") # round DOWN to nearest 10m

 .dt.strftime("%H:%M")

 .alias("time_str"),

]).drop_nulls()

 # ——— 4. Select + reorder final columns (including time_str) ———

 df_final = df_features.select([

 "time_str" ,

 "ft_5" , "ft_4" , "ft_3" , "ft_2" , "ft_1" ,

 "Lat" , "lon" , "weekday" , "exp_avg" , "cluster_id" , "target"

])

 aydie.in

http://aydie.in/

 Step 1: Parse the time column into a Datetime

 ● "pickup_binned_datetime" might be a string like "2022-01-01T12:00:00.000"
 ● You clean it by removing quotes
 ● Then convert it to an actual datetime type so you can later:

 ○ Group by time
 ○ Extract weekdays
 ○ Sort chronologically

 Store the parsed datetime in a new column called "pickup_dt"

 Step 2: Group the data — count pickups per cluster & time

 ● Count the number of pickups for each cluster (area) and time bin → this
 becomes your target variable (demand)

 ● Also, keep the lat and lon of the cluster as features
 ● Sort it by cluster and datetime to compute lag features

 Now you have one row per (pickup_cluster, time_bin).

 Step 3: Feature Engineering – Add lags, weekday, and moving average

 I used .over("pickup_cluster")

 to make sure these features are calculated per cluster.

 Export the dataset with these many features.

 Dimension 3.25 Million by 11 Features

 aydie.in

http://aydie.in/

 Machine Learning
 Load the Train and Test Datasets.

 Testing / Result

 Input / Output

 ft_1 ft_2 ft_3 ft_4 ft_5 lat lon week
 day

 Exp_Av
 g

 Target

 209 196 240 225 193 40.763863 -73.964451 6 206 205

 186 171 205 209 196 40.763863 -73.964451 5 185 194

 GitHub - Project:

 https://github.com/aydiegithub/nyc-taxi-demand-prediction.git

 aydie.in

http://aydie.in/

